
GM 5-9

Anwendungsbereich n ≈ 2800 U/min

Elektrische Tauchpumpe zur Entwässerung des Abwassers

GM 5-9

Ausführung

Elektrische Tauchpumpe zur Entwässerung des Abwassers aus speziell entwickelten Verbundpolymeren.

DoppelteWellenabdichtung mit zwischenliegender Ölkammer.

Kleine Abmessungen und hohe Leistung für den Einsatz in verschiedensten Anwendungen, für Fördermengen bis zu 217 Liter pro Minute.

Mit Schwimmerschalter für automatischen Start und Stopp.

Einsatzgebiete

Für sauberes Wasser mit Feststoffen bis zu einem Durchmesser von 5 mm. Zum Entleeren überfluteter Räume oder Tanks.

Wasserentnahme aus Teichen, Bächen und Regenwassersammelbecken. Für Beregnung und Bewässerung.

Einsatzbedingungen

Maximale Flüssigkeitstemperatur: 35 °C (mit Tauchmotor).

Eintauchtiefe: max. 5 m.

Motor

2-poliger Induktionsmotor, 50 Hz (n \approx 2800 U/min). einphasig 230 V \pm 10 % mit Wärmeschutzschalter.

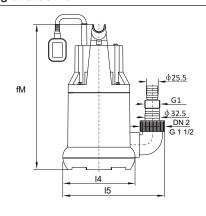
Eingebauter Kondensator.

Netzkabel H05RN-F, 3G0,75 mm2: mit Stecker, 10 m lang, 245IEC57, gemäß EN 60335-2-41 (Art. 25.6) für Pumpen bis 10 kg.

Isolationsklasse F. Schutzart IP 68.

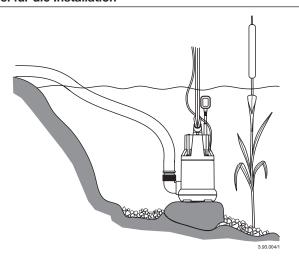
Werkstoffe

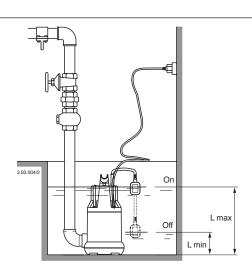
Teile-Benennung	Werkstoffe
relie-benefinding	Weinstolie
Pumpengehäuse	PP+GF30
Welle	PA66+GF30
Motormantel	Cr-Ni Stahl 1.4301 EN 10088 (AISI 304)
Pumpenmantel	PP+GF30
Filter	PP+GF30
Handgriff	PP+GF30
Welle	45#nickel
Gleitringdichtung	Graphit/Keramik/NBR
Dichtungsschmieröl	N7 machine oil


Leistung n ≈ 2800 U/min

Einphasig

						Q = Fördermenge							
					m³/h	0	1,2	3	6	9	12	13	
Modell	230V	Р	2	P1	l/min	0	20	50	100	150	200	217	
	Α	kW	HP	kW	H (m) = Gesamtförderhöhe								
GM 5-9	2,4	0,33	0,45	0,55		8,9	8,2	7,6	6,1	4,7	2,8	2	


P1: Max. Leistungsaufnahme. P2: Motornennleistung. H: Gesamtförderhöhe in m


Abmessung und Gewicht

TYP			kg				
	DN2	fM	14	15	Lmax	Lmin	Gewicht
GM 5-9	G 1 1/2	316	157	222	340	120	4.7

Beispiel für die Installation

